

Table of contents

2

1. Preface 10

Prerequisite knowledge 12

In this journey, you are not alone 13

2. Infrastructure, the past, present and future 14

Managing infrastructure at scale 15

Virtual machines 17

Resources utilisation and e ciency 20

Poor resource allocation 24

Packaging and distribution 30

Recap 37

3. The containers revolution 39

Docker and containers 41

Linux containers 44

Packaging and distributing Docker images 49

Linux containers vs virtual machines 53

Containers and development lifecycle 56

3

Recap 58

4. Managing containers at scale 61

Managing containers allocations & placements 65

Containers, networking and service discovery 67

Running containers at scale at Google 68

Data centre as a computer 70

Kubernetes as a scheduler 73

Kubernetes as an API 74

Kubernetes, what it is and what it is not 78

From containers to Kubernetes 80

5. Deploying apps on Kubernetes 81

Watching over Pods 88

Creating resources in Kubernetes 90

Kubernetes resources in YAML 92

Recap 95

6. Setting up a local environment 97

4

Your rst deployment 103

Inspecting YAML resources 107

Exposing the application 115

Exploring the cluster with Kubectl 122

Recap 126

7. Self-healing and scaling 127

Practising chaos engineering 128

Scaling the application 133

Scaling with the Service 137

Recap 138

8. Creating the app end-to-end 140

Creating the application 142

Containerising the application 143

Running the container 148

Uploading the container image to a container
registry

150

Sharing resources 154

Deploying the app in Kubernetes 161

5

De ning a Service 167

De ning an Ingress 173

Deploying the application 176

Recap 180

9. Practising deployments 182

Version 2.0.0 183

Deployment 185

Service 185

Ingress 186

Namespace 187

Version 3.0.0 187

If you are stuck 189

10. Making sense of Deployments, Services and
Ingresses

190

Connecting Deployment and Service 194

Connecting Service and Ingress 199

Recap 203

6

11. Challenges 204

Creating a Pod 205

Inspecting a Pod 205

Internet in a Pod 206

Back to basics 206

Perfect duo 207

12. Installing Docker, Minikube and kubectl 208

macOS 209

Installing Homebrew 209

Installing Docker on macOS 210

Testing your Docker installation 211

Installing minikube on macOS 212

Windows 10 214

Installing Chocolatey 214

Installing Docker on Windows 10 215

Installing minikube on Windows 10 219

Ubuntu 221

Installing kubectl on Ubuntu 221

7

Installing minikube on Ubuntu 222

13. Mastering YAML 225

Indentation 226

YAML maps 227

YAML lists 229

YAML data types 231

Strings 231

Numeric types 233

Boolean types 234

Null 235

Multiple documents 236

Comments 237

Snippets 238

Debugging tips 239

Navigating paths 240

Navigating maps 241

Navigating lists 242

8

yq 243

Merging YAML les 247

14. Kubectl tips and tricks 250

1. Save typing with command completion 251

How command completion works 251

Bash on Linux 252

Bash on macOS 255

Zsh 258

2. Quickly look up resource speci cations 259

3. Use the custom columns output format 261

JSONPath expressions 264

Example applications 265

4. Switch between clusters and namespaces with ease268

Kubecon g les 269

Use kubectx 274

5. Save typing with auto-generated aliases 276

Installation 279

9

Completion 279

Enable completion for aliases in Bash 280

6. Extend kubectl with plugins 284

Installing plugins 285

Finding and installing plugins with krew 286

Preface

Chapter 1

Welcome to Learnk8s' Kubernetes rst steps course!
This book is designed to take you on a journey and teach
you why containers and Kubernetes are dominating modern
development and deployment of applications at scale.
The book doesn't make any assumptions and covers the
basics as well as advanced topics.
You will learn:

What Kubernetes and containers are meant to replace
(Chapter 1).
How containers solve the problem of packaging,
distributing and running apps reliably (Chapter 2).
What is a container orchestrator and why you might
need one (Chapter 3).
The basic concepts necessary to deploy your apps on
Kubernetes (Chapter 4).
How to use a Kubernetes cluster (Chapter 5).
What happens when an app is deleted or crashes in the
cluster (Chapter 6).
The full end-to-end journey of creating apps, packaging
them as containers and deploying them on Kubernetes
(Chapter 7).
How di erent Kubernetes objects relate to each other
and how you can debug them (Chapter 8).

That's the high-level plan.
Each chapter dives into more details.

11

The book is designed to be hands-on, so you can read it to
the end, and re-read it while practising the command with a
real cluster.
There are also hands-on challenges in Chapter 8 (with
solutions).
When you complete all the challenges, you will be awarded a
certi cate of completion!
The book has three special chapters at the end:

1. A section designed to help you install the prerequisites.
2. A mastering YAML course — everything you need to
master the con guration language used by Kubernetes.

3. Tips and tricks to become more e cient with kubectl —
the Kubernetes command-line tool.

Prerequisite knowledge

This book tries to make as few assumptions as possible.
However, it's hard to cover everything singly and concisely.
To make the most out of this book, you should be familiar
with:

A shell environment like Bash or Powershell. You won't
use complex commands, so a basic working knowledge is

12

enough. If you haven't used Bash before and you want to
start now, I recommend checking out

.
Virtual machines and virtualisation. If you've used tools
such as VirtualBox or Parallels to run other operating
systems such as Windows, then you already know
everything there is to know.
Web servers such as Nginx, HAProxy, Apache, IIS, etc.
If you've used any of these to host websites, that is
enough to understand Kubernetes. If this is the rst
time you have heard about them, you can

In this journey, you are not alone

If at any time you are stuck or nd a concept di cult and
confusing, you can get in touch with me or any of the
instructors at Learnk8s.
You can nd us on the o cial Learnk8s Slack channel.

13

Learn Bash the
Hard Way by Ian Miell

check out this
introduction about Nginx.

You can request an invite at this link.

https://leanpub.com/learnbashthehardway
https://code.tutsplus.com/articles/nginx-guide-introduction--cms-21877
https://learnk8s.io/slack

Infrastructure,
the past,
present and
future

Chapter 2

In the past few years, the industry has experienced a shift
towards developing smaller and more focused applications.
It comes as no surprise that more and more companies are
breaking down their static apps into a set of decoupled and
independent components.
And rightly so.
Apps that are smaller in scope are:

1. Quicker to deploy — because you create and release
them in smaller chunks.

2. Easier to iterate on — since adding features happens
independently.

3. Resilient — the overall service can still function despite
one of the apps not being available.

Smaller services are excellent from a product and
development perspective.
But how does that cultural shift impact the infrastructure?

Managing infrastructure at scale

Developing services out of smaller components introduces a
di erent challenge.
Imagine being tasked with migrating a single app into a

15

Fig. 1

Fig. 2

collection of services.
When, for every application, you can refactor the same app
in a collection of four components, you have three more
apps to develop, package and release.

Applications packaged as a single unit are usually
referred to as monoliths.

You might have developed applications as single
units and then decided to break them down into smaller
components.

16

1 2

3

Fig. 3 During the transition, you could have created three
more apps that should be developed and deployed
independently.

And it doesn't end there.
If you test and integrate your apps into separate
environments, you might need to provision more copies of
your environments.
For example, with only three environments such as
development, staging and production, you might need to
provision 12 environments — 9 more than you had to
provision with a single app.
And that's still a conservative number.
It's common, even for smaller companies, to have dozens of
components such as a front-end, a backend API, an
authorisation server, an admin UI, etc.

Virtual machines

Your applications are usually deployed on a server.
However, it's not always practical to provision a new

17

machine for every deployment.
Instead, it's more cost-e ective to buy or rent a large
computer and partition it into discrete units.
Each unit could run one of your apps isolated from the
others.
Virtual machines are the primary example of such a
mechanism.
With virtual machines, you can create virtual servers within
the same server and keep your workloads isolated.
Each virtual machine behaves like a real server, and it has an
operating system just like the real one.
When you develop apps that are smaller in scope, you might
see a proliferation of virtual machines in your infrastructure.

18

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Each server could run several virtual machines.

As soon as you break the application into smaller
components, you might wonder if it is wise to keep them
in the same virtual machine.

Perhaps it's best to isolate the apps and de ne clear
boundaries between them.

You might want to package and run those apps into
separate virtual machines.

19

1 2

3 4

Virtual machines are widely used because they o er strong
guarantees of isolation.
If you deploy an app in a virtual machine that shares a server
with several others, the only thing you can see is the current
virtual machine.
You can't tell that you are sharing the same CPU and
memory with other apps.
But virtual machines have trade-o s.

Resources utilisation and efficiency

Each virtual machine comes with an operating system that
consumes part of the memory and CPU resources allocated
to it.

20

1 2

3

Fig. 1

Fig. 2

Fig. 3

Consider the following virtual machine.

Parts of the compute resources are used for the
operating system.

The application can use the rest of the CPU and
memory.

When you create a t2.micro virtual machine with 1GB of
memory and 1 vCPU in Amazon Web Services, you are left
with 70% of the resources after you account for the CPU
and memory used by the operating system.
Similarly, when you request for one larger instance such as a
t2.xlarge with 4 vCPU and 16 GiB of memory, you will end
up wasting about 2% of the resources for the operating
system.
For large virtual machines, the overhead adds up to about 2
to 3% — not a lot.

21

Fig. 1

Fig. 2

Fig. 3

When you develop fewer and larger apps, you have a
limited number of virtual machines deployed in your
infrastructure. They also tend to use compute resources
with more memory and CPU.

The percentage of CPU and memory used by the
operating system in a large virtual machine is minimal —
between 2 and 3%.

However, that's not true for smaller virtual
machines.

22

1 2

3

If you have four applications and decide to refactor them in
a collection of 4 smaller components each, you have 16
virtual machines deployed in your infrastructure.
When each virtual machine has an operating system that
uses 300MiB of memory and 0.2 vCPU, the total overhead
is 4.8GiB of memory (300MiB times 16 apps) and 3.2
vCPU (0.2 vCPU times 16 apps).
That means you’re paying for resources, sometimes 6 to 10%
of which you can't use.

23

1 2

3

Fig. 1

Fig. 2

Fig. 3

If you assume that you can break each app down
into four components, you should now have 16 virtual
machines and operating systems.

Smaller components have modest CPU and
memory requirements. The CPU and memory used by
the operating system aren't negligible anymore since the
virtual machine is smaller too.

The overhead in running operating systems with
smaller virtual machines is more signi cant.

However, the operating system overhead is only part of the
issue.

Poor resource allocation

You have probably realised that when you break your service
into smaller components, each of them comes with di erent
resource requirements for CPU and memory.
Some components, such as data processing and data mining
applications, are CPU intensive.
Others, such as servers for real-time applications, might use

24

Fig. 1

Fig. 2

Fig. 3

more memory than CPU.

When you develop apps as a collection of smaller
components, you realise that no two apps are alike.

They all look di erent. Some of them are CPU
intensive; others require more memory. And you might
have apps requiring speci c hardware such as GPUs.

You can imagine being able to pro le those apps.
Some of them could use more CPU than others.

25

1 2

3 4

Fig. 4 Or you could have components that use similar
CPU resources but a lot more memory.

Ideally, you should strive to use the right virtual machine
that ts your app's requirements.
If you have an application that uses 800MiB of memory, you
don't want to use a virtual machine that has 2GiB.
You're probably ne with one that has 1GiB.
In practice, it's easier said than done.
It's more practical to select a single virtual machine that is
good enough in 80% of the cases and use it all the time.
The result?
You waste hundreds of gigabytes of RAM and plenty of
CPU cycles in underutilised hardware.

26

Fig. 1

Fig. 2

Fig. 3

Fig. 4

You can deploy an application that uses only 1GiB
of memory and 1 vCPU in a 4GB memory virtual
machine.

However, you're wasting 3/4 of the resources.

It's common to use the same virtual machine's spec
for all apps. Sometimes you might be lucky and minimise
the waste in CPU and memory.

In this case there are still resources left, but they are
negligible.

27

1 2

3 4

Companies are utilising as little as 10% of their allocated
resources.
Can you imagine allocating hundreds of servers, but
e ectively using only a dozen of them?
What you need is something to break free from the xed
resource allocation of a virtual machine and regain the
resources that you don't use.
If you don't use the CPU and memory, you should be able
to claim it back and use it for other workloads.
But that's not the only waste of resources.
A virtual machine emulates a real computer.
When you create one, you can decide what kind of CPU you
wish to emulate, as well as what networking device to use,
storage, etc.
If you have hundreds of virtual machines, each of them will
have their own virtual network interface — even if some of
them share the same network connection on the same server.

28

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Virtual machines emulate network devices to
connect to the internet.

They also emulate graphic cards.

If you wish to do so, you could run a CPU with a
di erent architecture from your computer.

Emulating hardware is costly, particularly when you
run virtual machines at scale.

The other challenge you might face is the packaging and

29

1 2

3 4

distribution of your virtual machines.

Packaging and distribution

A virtual machine is just a regular server, so you have to
install, run and maintain an operating system.
You also need to provide the environment with the right
dependencies.
If you develop Java apps, you might need the JVM
(runtime) as well as external dependencies (a good example
is the which has to be
installed separately).
Similarly, Node.js applications require the Node.js runtime
as well as Python and the C/C++ toolchain to compile
native add-ons.

30

Java Cryptographic Extension

1 2

https://www.oracle.com/java/technologies/javase-jce8-downloads.html

Fig. 1

Fig. 2

If you plan on running a Spring application, you
might need to provision a virtual machine with the JVM
installed.

If you wish to run a Node.js app, you might need to
provision the environment accordingly.

You should cater to all of those requirements when you
create the virtual machine and before the service is deployed.
If it sounds like a time-consuming and complex task, it is.
Fortunately, there's an entire set of tools designed to
con gure and provision environments such as Puppet,
Ansible, Chef, Salt, etc.
There isn't a standard way to provision environment, so you
can pick the tool that works best for you.
But even if you automate the con guration, it is often not
enough.
Launching a virtual machine, waiting for the operating
system to boot, and installing all of the dependencies could
take some time.

31

Fig. 1

Fig. 2

Fig. 3

Provisioning a virtual machine is time-consuming.
Waiting for it to be created and ready could take a few
minutes.

Even if you automate the con guration,
downloading and installing packages could take several
minutes.

At the end of the process, you still have to
download the code for your app and run it.

32

1 2

3 4

Fig. 4

Fig. 1

Since that could take time too, provisioning
environments from scratch could take several minutes
and isn't best practice.

It's also error-prone.
What if one of the packages could not be downloaded?
You have to start from scratch.
When working with virtual machines, it's usually a good
idea to provision the environment once, take a snapshot and
save it for later.
When you need a new environment, you can retrieve the
snapshot, make a copy and deploy the application.

Once you provision the virtual machine, you don't
have to run the environment immediately.

33

1 2

Fig. 2 Instead, you could save the image and use it to
generate copies the next time you need one.

Taking snapshots of virtual machines is a popular option
since you can speed up the deployment process signi cantly.

34

1 2

3 4

Fig. 1

Fig. 2

Fig. 3

Fig. 4

When you wish to create an environment, you
could copy the snapshot instead of reprovisioning a blank
virtual machine.

As soon as the virtual machine boots, the
environment is precon gured.

You might still need to apply con gurations to it,
such as setting the proper environment variables.

However, it takes signi cantly less time to create a
new environment.

Unfortunately, there is no common standard for creating
snapshots.
If you use open source tools such a Virtual Box, you might
use the vbox format.
Amazon Web Service expects virtual machines to use the
Amazon Machine Image (AMI).
Azure expects those snapshots to be packaged in a
completely di erent format too.
While you might be able to convert from one format to
another, it's not always straightforward to do so.
And you also have to version and keep track of snapshots as
you patch the operating system or upgrade the
dependencies.

35

Every change to the virtual machine has to go through a new
cycle of provisioning and snapshotting.
If you deploy applications with diverse languages and
runtimes, you might nd yourself automating the process of
creating, patching and deployments for each app.
With dozens or hundreds of applications, you can already
imagine how much e ort is involved in creating and
maintaining such a system.
As an example, let's consider the following set-up:

One Node.js application.
One Java application.
Two environments: development and production.

If you decide to adopt a production set-up based on virtual
machines, you might need:

A generic script that can provision the environment.
The script should install all the dependencies before the
snapshot is taken.
A repository where you can store and tag snapshots for
later retrieval.
A script to provision environment-speci c settings such
as environment variables.
A script that retrieves the latest snapshot, creates a
virtual machine and deploys the app.

The above should be repeated twice — one for each app.

36

Every organisation has a slight variation of the above steps.
Some might skip steps like the snapshotting, for example.
Others might integrate with more advanced checks and
optimisation such as scanning snapshots for common
vulnerabilities.
What's important to recognise is that there isn't a widely
adopted standard or common way to do things.
As a consequence, there's fragmentation in tools and most
of the time the code is vendor-speci c.
The automation that you build to deploy apps in Amazon
Web Service cannot be reused in Azure unless you make
changes.

Recap

Managing applications at scale is challenging.
Maintaining and running infrastructure for thousands of
applications can be even more challenging.
Virtual machines are an excellent mechanism to isolate
workloads, but they have limitations:

1. Resources are allocated upfront. Every CPU cycle or
megabyte of memory that you don't use is lost.

37

2. Each virtual machine runs an operating system that
consumes memory and CPU. The more virtual
machines, the more resources you have to spend to keep
operating systems running.

3. Virtual machines emulate even the hardware — even if
you don't need it. A virtual machine is a virtual
computer that emulates network drivers, CPU, storage,
etc.

4. You should invest in tooling and processes to create, run
and maintain virtual machines. The industry hasn't
settled on a single tool or strategy, so there is little by way
of an o the shelf solution that you can leverage.

But are virtual machines the only mechanism to isolate
workloads?
In the next chapter you will learn how you can isolate apps
without using virtual machines.

38

